===接《远程介绍多元关联动态模型(上)》

    屏幕上,多元关联拟脑模型中的核心信息元O的参数位置,随着ABC的联动一直在变化着数字。。。

    “态输出,反向态输出,路径行走算法。”林久浩说道。

    “什么?态输出,反向态输出,这是什么?”宁老突然感兴趣了,他原来试用的多元关联拟脑模型云提供的SaaS服务,还没有‘态’计算这个技术概念。

    “态输出是针对这种情况,影响核心元的因素太多,而且这些因素成网状关联,一旦动起来就呈现无法测定的互动,所以我父亲就提出了态输出理论。”林久浩。

    “你再说清楚一点?”宁老继续盯着问。

    “我现在要问一个问题,大家要想一想,如果出现了关联因素互动的情况,我们关心的是什么?”林久浩问道。

    “参数因素是怎么动的,不知道这些参数怎么动,我们无法测定对核心元的影响。”终于有另一个半秃顶的工程师发言了。

    “是吗?是这个吗?”林久浩继续问道。

    “我们关心是平衡。”宁老一句话点在重点上。

    “是的,平衡,中间的参数是什么不重要,只要满足合力为0,例如A=1,B=2,C=-3可以A+B+C=0,A=4,B=1,C=-5也可以A+B+C=0。。”刘工明白了。

    “对,这里的ABC是带向量方向的力,我们需要的是核心元O的合力为0这个达成条件,所以我们需要使用态输出的理论。”林久浩说道。

    “小林,你把态输出给我们解释解释,这里很多人还糊涂着呢。”宁老说道。

    “态输出,是指在多种因素影响下,而且这些因素呈现关联且有序,或者关联且无序,无法测定的情况,而我们实际需要的不是这些因素,而是核心的状态。”林久浩解释道。

    “关联且有序,既然有序就可以测定呀。”一位工程师突然说道,打断了林久浩的话。

    “别打断林工。。”刘工不高兴了。

    “好的,我先解释一下关联且有序无法测定,这个刘工应该明白吧,你明明知道A是怎么影响BCDEF的,但是,它们一旦动起来,当你测定到D的时候,由于D也影响A,A已经变化了,这时你的D值已经没有意义了。”林久浩解释道。

    “对,这个我明白,因为A又变化了,所以D的值已经变动了,你测定的D值又无效了。。。你继续林工。”刘工。

    “我们继续,我们需要的是核心的状态,所以这就像照相一样,我们对多元关联拟脑模型照相,得到定格状态,把这个状态输出。因为我们需要的是这个‘态’。”林久浩。